

 Page 1

A crack on the glass
Evaluation of consumer Windows OS security architecture and its

feasibility as a potential isolation provider for "Qubes Windows Lite"

“Well, dreams, they feel real while we're in them right? Its only when we wake up then we realize that

something was actually strange.” -- Cobb, Inception

Abstract

In this paper we describe our attempt at creating Qubes Windows Native Isolation system, which is a

collection of isolated application containers. We discuss the project requirements, what technical

means are needed to implement such system and why the available Windows APIs and system

architecture is not appropriate for the task.

Rafał Wojdyła, Invisible Things Lab

omeg@invisiblethingslab.com

mailto:omeg@invisiblethingslab.com

 Page 2

1. Introduction to Qubes OS
Qubes OS strives to provide strong desktop security by isolation [1]. Having separate domains

dedicated to different tasks helps to mitigate potential attacks – a PDF exploit coming from an

untrusted site that compromises “public” domain will not affect “work” domain provided they are

properly isolated. Qubes R2 is built on top of a Linux host and Xen hypervisor – domains are

implemented as lightweight VMs administered from the trusted one, traditionally called dom0. This

of course implies we trust that Xen-provided isolation is good, but one needs to start somewhere.

The next iteration of Qubes is built on top of the Odyssey framework [2] – the goal of which is to

decouple Qubes core from Xen. Qubes Odyssey uses the libvirt [3] project to implement a hypervisor

abstraction layer. That means we can replace Xen with a different virtual machine manager (VMM) –

Hyper-V, Virtual Box, VMWare or others. Such architectural change provides a great deal of

flexibility. If someone doesn’t want to be running Linux as the host OS, they can use Windows. Going

even further, one can think of an environment where Qubes domains would be implemented as

sandboxed containers inside a normal Windows installation without an actual VMM. Of course such

system wouldn’t be as secure as one using a proper VMM because the attack surface is larger –

constricting the whole Windows API is a much more difficult task than using a relatively narrow set of

VMM interfaces. However, it would be significantly easier to adapt for users while still being more

secure than “just Windows”. Thus the idea of Windows Native Isolation for Qubes was born.

2. Windows Native Isolation for Qubes
Windows Native Isolation (or WNI for short) is an attempt to create Qubes version that would use a

single Windows instance as a pseudo-hypervisor for separate domains. Since there is no actual VMM

involved it requires a custom libvirt driver that would encapsulate WNI-specific functionality and

expose it to the Qubes core. This driver would be responsible for implementing containers for actual

domain isolation. Let’s see what are the requirements for such environment:

 Processes running in an isolated domain can’t change state of the host OS or other domains

without explicit user action. Restricted behaviors should include:

 Changing global host OS settings.

 Cross-domain inter-process communication (IPC) of any kind.

 Access to file system and Windows registry outside of dedicated domain space.

 Access to kernel objects created by processes in other domains [4].

 Access to windows created by processes in other domains.

 Access to clipboard.

 Access to physical screen and input devices.

 Access to network interfaces.

 Access to other peripheral devices.

 Only the administrative domain (dom0) can create, destroy and manage other domains.

 All visible GUI windows and elements created by a particular domain should have non-

spoofable graphical indicators identifying the owning domain.

 Ability to run reasonable number of domains simultaneously.

 Small performance overhead.

 Resistance to DOS attacks in domains by resource exhaustion.

 Applications that do not belong to the Qubes core can’t run in the administrative domain.

 Supported Windows editions: Windows 7 and above, 64-bit.

 Page 3

There is a significant amount of research already performed on the subject of Windows application

sandboxes [5]. We can utilize some of that research because Qubes WNI is conceptually a set of

application containers where domains are security boundaries. Let’s examine in details how we can

(or cannot) accomplish the requirements outlined above.

3. Technical analysis of Qubes WNI requirements and possible

implementations

Implementing basic domain security boundaries
We chose to use separate Windows user accounts as the basis for domain isolation. Each domain is

represented by a separate restricted user account that is managed by the Qubes core. Windows

security architecture ensures that we can apply discretionary access control to files, registry keys and

kernel objects as needed [6].

Administrative domain (dom0) is represented by the interactive user. This user account does not

need to have administrative rights as long as the user can securely invoke administrative functions of

the Qubes core (implemented as system services and/or kernel drivers). The interactive user owns

the graphical shell process (usually explorer.exe) in the interactive session. Applications running in

other domains should be clearly marked as so, as stated in the requirements e.g. via use of colorful,

non-spoofable window decorations (title bars, frames).

Preventing changes to global host OS settings
Most of this restriction can be implemented by proper Local Security Policy (LSP) [7] definitions and

file/registry Access Control Lists (ACLs) [8]. However there are Windows APIs affecting global system

state that are not covered by LSP, those require additional steps to ensure they are properly

restricted. For example, SystemParametersInfo function can be used to change a wide variety of

global settings (accessibility options like sticky/filter keys, desktop wallpaper, desktop work area,

mouse speed etc.) [9]. Most of that functionality is available to any account without restriction.

These settings are usually mapped to an appropriate registry key and as such can be regulated by a

proper ACL entries, but this is a) not documented and b) not reliable. Not all of the

SystemParametersInfo functionality maps to registry keys. So how we can deal with it?

The function is exported by user32.dll library, which is the user-mode entry for most APIs that

deal with graphical user interface (GUI) and windowing subsystem. Many of the readers are probably

thinking “API hooking!” [10] Indeed, by inserting our own code at the API’s entry point we can in

principle monitor its usage and enforce additional security policies. There is a problem however. Like

for most USER APIs, SystemParametersInfo‘s real functionality is implemented in the kernel-

mode module – the infamous win32k.sys and the user-mode entry point is just a wrapper that

does some preprocessing of the function parameters. Even if we properly hook the user-mode API

(which is by no means easy to do without allowing any bypass methods) nothing stops the

(potentially malicious) process from calling the kernel-mode API directly by an appropriate system

call or syscall for short [11]. Here’s how the final user-mode stub for our function looks like:

Any process can use that code and directly call into win32k.sys bypassing our user-mode hook.

 Page 4

Well, why not employ a kernel-mode hook then? For one, implementing such thing is much harder

than a user-mode API hook. Any error can easily lead to a bug check [12] that brings the whole

system down. There is a more fundamental problem though – beginning from Windows Vista (6.0)

Microsoft introduced a mechanism called Kernel Patch Protection (KPP for short or, informally,

PatchGuard) [13]. KPP aims to prevent or at least discourage patching the Windows kernel and other

critical system areas. win32k.sys is not protected by KPP in Windows 7, but it is in Windows 8. Of

course it is possible to bypass KPP [14], but it’s obvious that a legitimate product should not use

hacks and dirty tricks, at the very least because of security and reliability concerns, but also because

of potential legal implications.

Job Objects [15] can be used to prevent processes from using SystemParametersInfo function,

but there are other APIs with system-wide effects that can’t be limited that way and are callable from

any process (e.g. SetSysColors that is also just a system call stub) [16].

Other, non-intrusive solutions are possible but are definitely not trivial. They will be briefly explained

in later sections.

Restricting cross-domain IPC
Windows provides a multitude of options for inter-process communication and interaction. In Qubes

WNI we need to ensure that no such activity can occur without explicit permission. Below we review

all available IPC channels.

Pipes
Named or anonymous pipes are perhaps the best known method for native IPC in Windows

environment. They are a simple client-server mechanism for data transfer backed by shared memory.

Pipes are implemented as securable objects by the kernel so it’s easy to protect them using

appropriate ACLs [17].

Mailslots
Not as widely known as pipes, mailslots are used for one-way communication. They are also

securable objects and may have ACLs applied to them [18].

Sections (shared memory)
Also known as file mappings on the user-mode side, they can be used to share regions of virtual

memory. Sections are securable objects and may have ACLs applied to them [19].

Events, mutexes, semaphores, waitable timers
Used for inter-thread and inter-process synchronization. They are all securable objects and may have

ACLs applied to them [20], [21], [22], [23].

Debugging and process/thread manipulation APIs
Processes and threads are of course securable. By default processes and threads created by one user

do not have access to processes and threads created by another user (unless the requesting process

has administrative rights, but WNI domain users do not have administrative rights).

Advanced Local Procedure Call (ALPC)
Often also referred to as Advanced Local Interprocess Communication, ALPC is a high-speed IPC

mechanism implemented by the Windows kernel. Its details are undocumented but it’s used by many

system components for internal communication. ALPC ports are implemented as securable kernel

objects [24], [25].

 Page 5

Fig. 1, ALPC ports owned by the CSRSS process

The problem with ALPC ports is that they are mostly owned by critical system services and are used

by various Windows APIs. Access to some of them is needed for successful working of any

application. This problem will be described in more detail in the section dealing with kernel objects.

Window messages
GUI processes that create windows can communicate using various window messages. Windows and

other GUI elements are not securable objects. This will be discussed in detail in the section talking

about GUI isolation.

We need to remember that even though kernel objects are securable, applications that create them

may not necessarily follow our security policies. Qubes WNI core could change ACLs on existing

objects, but applying proper security policies to newly created objects would require modifications to

the Object Manager (Windows kernel component described below).

Restricting file and registry access
This is simple in principle, because the system registry and NTFS file system are both securable.

Practical implementation is not easy though, because we need to create policies with actual ACL

values for the registry and file system. WNI domains run as different logon sessions in the same

interactive session and special care must be taken to restrict access to resources that are accessible

to all interactive processes by default.

Restricting access to kernel objects
Kernel objects (or executive objects to be more precise) encapsulate various types of resources

managed by the executive part of the Windows kernel [26]. Example object types are files, processes,

events or desktops. There are 42 object types in a default Windows 7 system, all of them are

enumerated below in a dump from a test system:

42 possible object types

INDEX POOL_TYPE ACCESSMASK COUNT TYPE_NAME

0x02: NonPagedPool 0x001f0001 0 Type

0x03: PagedPool 0x000f000f 149 Directory

0x04: PagedPool 0x000f0001 5 SymbolicLink

0x05: PagedPool 0x001f01ff 241 Token

0x06: NonPagedPool 0x001f001f 3 Job

0x07: NonPagedPool 0x001fffff 319 Process

0x08: NonPagedPool 0x001fffff 1539 Thread

0x09: NonPagedPool 0x000f0003 1 UserApcReserve

0x0a: NonPagedPool 0x000f0003 0 IoCompletionReserve

0x0b: NonPagedPool 0x001f000f 0 DebugObject

0x0c: NonPagedPool 0x001f0003 5615 Event

0x0d: NonPagedPool 0x001f0000 0 EventPair

0x0e: NonPagedPool 0x001f0001 482 Mutant

0x0f: NonPagedPool 0x001f0001 0 Callback

0x10: NonPagedPool 0x001f0003 1238 Semaphore

0x11: NonPagedPool 0x001f0003 217 Timer

0x12: NonPagedPool 0x000f0001 0 Profile

0x13: PagedPool 0x001f0003 66 KeyedEvent

0x14: NonPagedPool 0x000f037f 100 WindowStation

0x15: NonPagedPool 0x000f01ff 95 Desktop

0x16: NonPagedPool 0x000f00ff 254 TpWorkerFactory

0x17: NonPagedPool 0x001f01ff 0 Adapter

0x18: NonPagedPool 0x001f01ff 0 Controller

0x19: NonPagedPool 0x001f01ff 0 Device

 Page 6

0x1a: NonPagedPool 0x001f01ff 0 Driver

0x1b: NonPagedPool 0x001f0003 152 IoCompletion

0x1c: NonPagedPool 0x001f01ff 1356 File

0x1d: NonPagedPool 0x000f003f 9 TmTm

0x1e: NonPagedPool 0x001f007f 0 TmTx

0x1f: NonPagedPool 0x001f007f 18 TmRm

0x20: NonPagedPool 0x000f001f 0 TmEn

0x21: PagedPool 0x001f001f 514 Section

0x22: NonPagedPool 0x001f0003 14 Session

0x23: PagedPool 0x001f003f 1416 Key

0x24: NonPagedPool 0x001f0001 908 ALPC Port

0x25: NonPagedPool 0x001f0000 5 PowerRequest

0x26: NonPagedPool 0x001f0fff 30 WmiGuid

0x27: NonPagedPool 0x00120fff 2007 EtwRegistration

0x28: NonPagedPool 0x00120fff 6 EtwConsumer

0x29: NonPagedPool 0x001f0001 5 FilterConnectionPort

0x2a: NonPagedPool 0x001f0001 5 FilterCommunicationPort

0x2b: PagedPool 0x001f0003 22 PcwObject

Objects are managed by the Object Manager and are made available for use to the Windows API by

various system calls (NtCreateFile, NtOpenProcess, NtSetEvent, NtUserSwitchDesktop

etc). Every running process accesses from a few to thousands of kernel objects.

Fig. 2, Named kernel objects owned by an instance of Notepad

Kernel objects are securable – that means we can protect them with ACLs. Here, problem solved,

right? Not really. But to see why we need to clarify a few things first.

Intermission: tokens, permissions, impersonation, oh my

Security Identifier (SID) is a system-wide unique value that identifies a trustee – a system account,

group or logon session. SIDs are primary entities to which access control can be applied [27].

Access token is a kernel object that describes identity and privileges of a process or thread [28]. It

contains, amongst other things, SIDs for the owner account and group, and a logon SID. Every child

process inherits the token of its parent. Assignment and creation of arbitrary tokens is a security-

critical operation and requires appropriate privileges, only assigned to the SYSTEM account by

default.

Logon SID is a SID that the system creates when a user is authenticated during logon, interactive or

otherwise. LogonUser function returns an access token that contains a logon SID [29].

 Page 7

Fig. 3, Logon SID in the access token of Notepad that was launched by the interactive user

Logon session is a collection of processes that have the same logon SID assigned [30]. Usually it’s

created by Winlogon process during an interactive logon, but can also be started by calling the

LogonUser function. A logon session is destroyed when the last process referencing its logon SID is

terminated.

As we can see, a user SID is not equivalent to logon SID – if we call LogonUser two times with the

same user credentials we will get two different logon SIDs that can be subject to different access

control rules.

As we said before, Qubes WNI uses separate user accounts as a basis for domain separation. How do

we start a process as another user? There are several ways. The most straightforward way is the

CreateProcess… family of functions. The most convenient of them is

CreateProcessWithLogonW: it takes both user credentials and executable details and performs

both logon and process creation in one step [31]. Perfect! All may seem to work well but there is one

minor detail that can potentially ruin our security model: this function doesn’t create a new logon SID

but uses logon SID of the caller instead. Why does this matter? After all, the new process still has a

different owner SID. That’s true, but most dynamic kernel objects in an interactive session are

protected by default with ACLs that rely on logon SID. We could add explicit ACCESS_DENIED entries

containing the new domain’s user SID to all objects but this won’t help us secure the future objects

created by 3rd party applications.

Fig. 4, SIDs in a default security descriptor for an interactive desktop

 Page 8

This behavior of CreateProcessWithLogonW is not really made clear in its MSDN documentation.

It’s only mentioned in the following section:

Windows XP with SP2 and Windows Server 2003: You cannot call CreateProcessWithLogonW from a

process that is running under the "LocalSystem" account, because the function uses the logon SID in

the caller token, and the token for the "LocalSystem" account does not contain this SID. As an

alternative, use the CreateProcessAsUser and LogonUser functions.

…but this is true for Windows 7 as well.

The proper way is to use CreateProcessAsUser function [32] if our code runs with SYSTEM rights

(because that function requires SeAssignPrimaryToken privilege) or CreateProcessWithTokenW if

we “only” have administrative rights [33]. Both of these functions require a separate call to

LogonUser (that creates a new logon SID) and additional calls to prepare user environment, but the

end result is a process with a logon SID different than the interactive logon SID.

Back to kernel objects. As we’ve seen above most kernel objects are protected by ACLs that rely on

logon SID of the interactive user. That’s usually enough because the interactive session is meant to

be the real security boundary. If we have several users logged on at the same time to a single system

(using Remote Desktop on a server or Fast User Switching on consumer Windows) they cannot access

each other’s kernel objects normally. That’s because interactive sessions implement kernel object

namespace separation [34].

Named kernel object namespace looks like a tree structure similar to a typical file system. Object

directories can contain objects or other directories. There are symbolic links that point to other

objects or object directories (object directories are just a special object type). To browse through the

object namespace one can use a tool like WinObj [35].

Applications don’t have direct access to kernel objects, they typically access them by using

appropriate high-level API functions (CreateFile, OpenProcess, SetEvent, SwitchDesktop

etc.) All those functions operate on handles, which are process-specific identifiers mapped to

particular objects in process handle tables.

Each interactive user session has its own private kernel object namespace to prevent name collisions

when multiple users are logged on to the system at the same time. When a process running in

session 1 refers to an event named SomeEvent, the Object Manager transparently maps that name

to \Sessions\1\BaseNamedObjects\SomeEvent (starting from Windows 6.0 (Vista) session 0 is

reserved for system services and interactive session IDs start at 1).

What stops applications from using fully-qualified object names to access objects from other

sessions? Default ACL of the \Sessions\x\BaseNamedObjects object directory only allows access

to processes with a logon SID that started the current interactive session, administrators and the

SYSTEM account. All child objects inherit that ACL by default. It may seem that this is just fine for the

purpose of isolating processes that should run as different users in the same interactive session. But

is it?

 Page 9

Fig. 5, Notepad launched by the CreateProcessWithTokenW API as a different user

The error above is a result of a CreateProcessWithTokenW call where the token’s logon SID is

different than the interactive logon SID. 0xC0000142 means “DLL initialization failed” – the process

couldn’t start because one of the DLLs it depends on failed to initialize. Debugging such problems can

be tricky as the process itself never starts – Widows loader aborts the operation. We can guess that

the problem most likely has to do with kernel object permissions.

One way to see what fails is by using Global Flags – a global system variable that allows developers to

enable various built-in diagnostic mechanisms [36]. One of the options (“Show loader snaps”)

enables verbose debugging output for the image loader. After setting it using the standalone GFlags

utility or through debugger (!gflag +sls command in WinDbg) we can examine the output and

find this:

0614:06c4 @ 12725329 - LdrpRunInitializeRoutines - ERROR: Init routine

0000000077256B88 for DLL "C:\Windows\system32\USER32.dll" failed during

DLL_PROCESS_ATTACH

0614:06c4 @ 12725329 - LdrpInitializeProcess - ERROR: Running the init

routines of the executable's static imports failed with status 0xc0000142

We know now that USER32’s DllMain is failing, but we don’t know why yet. We know the function’s

address so we can debug it, but it’s trickier than it looks: the actual failure point lies deep inside

kernel code.

kd> k

Child-SP RetAddr Call Site

fffff880`03fa4598 fffff960`000d3463 win32k!UserTestForWinStaAccess

fffff880`03fa45a0 fffff960`000a54be win32k!xxxResolveDesktop+0x42b

fffff880`03fa4950 fffff960`000a220b win32k!xxxCreateThreadInfo+0x89e

fffff880`03fa4b20 fffff960`00071ac3 win32k!UserThreadCallout+0x21b

fffff880`03fa4b70 fffff800`03107de2 win32k!W32pThreadCallout+0xff

fffff880`03fa4bc0 fffff800`028124ba nt!PsConvertToGuiThread+0x1fe

fffff880`03fa4bf0 fffff800`02818fdf nt!KiConvertToGuiThread+0xa

fffff880`03fa4c20 000007fe`ff03704a nt!KiSystemServiceExit+0x1c4

00000000`0025de98 000007fe`fefdd3e4 GDI32!ZwGdiInit+0xa

00000000`0025dea0 00000000`76f47311 GDI32!GdiDllInitialize+0x124

00000000`0025e000 00000000`7705f216 USER32!UserClientDllInitialize+0x749

kd> dt _unicode_string @rcx

ntdll!_UNICODE_STRING

 "\Sessions\1\Windows\WindowStations\WinSta0"

kd> gu

win32k!xxxResolveDesktop+0x42b:

fffff960`000d3463 8bf0 mov esi,eax

kd> r rax

rax=00000000c0000022

 Page 10

Bingo. 0xC0000022 status code means “access denied”. What happens is GDI32.DLL issues a win32k

system call during its initialization and the system service dispatcher tries to convert the thread to a

GUI thread (basically to perform some initial setup for win32k). Somewhere in that setup code there

is a check if the interactive window station is accessible.

Notepad is an application that creates a window. That means it needs to access the interactive

desktop and the window station. But the default ACLs on those objects don't allow access to SIDs

other than the interactive logon SID, however. We have a problem.

What can we do? Any GUI application needs access to the window station and desktop to run

correctly. This is potentially risky because Windows offers little in the way of protecting GUI

resources. We will discuss GUI isolation in a later section.

However even if we manage to solve GUI issues or just allow applications running in restricted Qubes

domains access to the window station and desktop it will not be enough. Every non-trivial application

creates and uses various kernel objects through Windows APIs. As was said before most new kernel

objects are created in a session-specific object directory that is not accessible to processes with a

logon SID different than the interactive one. Trying to solve that problem and allowing access to

\Sessions\x\BaseNamedObjects directory may cause security issues though – a process running

in one domain can perform a name squatting attack. Because the object namespace is shared in such

scenario, a malicious process could create an object named just like something that’s normally used

by another process, a shared memory section for example, before the “legitimate” process does so. If

the malicious process fills said object with malformed data and the second process tries to use the

object without proper validation, Bad Things can happen. This attack can also be used as a form of

denial of service if the malicious process blocks another process from creating object(s).

As we see, GUI processes need access to the window station/desktop as well as other named objects

(mainly ALPC ports) that are created by system services and need to be shared by all interactive

processes in a session. Without access to these ports applications may behave incorrectly or just

crash, as illustrated on the images below.

Fig. 6, Window of a process without access to \ThemeApiPort object (left) and with access to that port (right)

 Page 11

Fig. 7, Internet Explorer's title bar when the process doesn't have access to the Desktop Window Manager's ALPC API port

Ideally we would like to separate object namespaces completely, but that’s not really possible

without running processes in another interactive session. We cannot use separate interactive

sessions for WNI domains. Sessions would solve most of our problems with object namespaces,

because the separation mechanism is already implemented there. However, consumer Windows

versions support only one active session at a time. It’s possible to circumvent that limitation but such

actions are against Windows EULA. Even if we could use multiple sessions there are fundamental

issues preventing us from developing seamless GUI integration in such scenario (discussed in detail

later).

What are the possible solutions?

 We can grant access to all these per-session system objects to WNI domains. That, however,

would open an unchecked communication channel between domains. Those objects are

created in dom0, the administrative domain. ALPC port interface is officially undocumented

along with actual communication protocols used by system components. Exposing internal

windows API ports to untrusted domains is a bad idea, especially when there are

documented vulnerabilities in such mechanisms [37].

 We can implement our own object namespace separation. This isn’t too hard if we deal with

newly created objects only (although still requires kernel mode code and some dirty tricks

with the Object Manager). Even then the problem with shared system objects remain.

 We can try to create our own implementation of interactive sessions without actually using

the system implementation. That would allow us to have multiple copies of system services

and processes inside (or alongside) one “real” interactive session. Such task is of course very

hard as the session implementation details are not well documented and can change

between operating system versions. Our research suggests that this might be possible and is

an eventual avenue for future attempts at implementing Qubes WNI.

Conclusion: domain kernel object isolation without significantly impacting usability (or highly

non-trivial development) is an open issue.

Implementing GUI isolation and seamless inter-domain integration
The fact that windows and other GUI elements are not securable is perhaps the biggest flaw in the

Windows security model. It’s a result of maintaining backwards compatibility with pre-NT editions

where security wasn’t really considered in system’s design. By default, processes running as different

users can affect each other by using various windows messages. Any GUI process can potentially

spoof things like password input boxes because raw access to the desktop is not restricted – if an

application can show its window, it can draw anything on the desktop. Clipboard is shared between

all processes belonging to an interactive window station. Processes can synthesize keyboard and

mouse input in a way that can affect other processes. Basically, it’s a mess.

First, we need some definitions.

 Page 12

Window station is a kernel object that belongs to an interactive session. It contains a clipboard, an

atom table, and several desktop objects. Only one window station, named WinSta0, is interactive –

that means it can receive user input and display user interface [38].

Desktop is a kernel object that belongs to a window station. It contains a logical display surface and

GUI objects like windows, menus or hooks [39]. Window messages can only be sent between

processes on the same desktop, desktop is also a boundary for message hooks [40].

We need to implement three things:

 GUI isolation: cross-domain window messages, hooks, clipboard access etc. should not be

possible.

 Seamless GUI integration: even if windows created by other domains are physically on some

other desktop/session, we need to display them on the interactive (host) desktop and it

should be possible to normally use them.

 Non-spoofable window decorations: all windows belonging to a domain should be clearly

marked with appropriate color and domain name.

The image below shows GUI isolation on Xen-based Qubes OS where all the above points are met.

Fig. 8, Windows from multiple domains on a Qubes desktop (Linux host)

The best solution would be to run each domain in its own interactive session, as discussed in the

section where we explained issues with kernel objects. Each session contains an interactive window

station and desktop so we would get GUI isolation for free. This is not really possible though:

a) Consumer Windows systems are limited to one active session at a time. Inactive sessions

can’t be interacted with and they do not render their display contents.

b) There is no documented way to create an interactive session programmatically. It’s possible

to use Remote Desktop Protocol to connect to the local machine and create a session that

way, but again, not on consumer Windows, and RDP sessions differ from “physical” sessions

in various ways because display and input devices are virtualized.

 Page 13

What are other options? Only one predefined window station can be interactive so we can’t use that

as a useful security boundary. Maybe we can use multiple desktops then? Each domain would need

to use a separate desktop for its applications. This is not hard to implement but then the task of

presenting windows from other domains on a host/dom0 desktop (like in the image above) is pretty

much impossible because of Windows display architecture.

The main problem is that win32k.sys, the kernel component responsible for windowing and graphics

subsystems, is not capable of simultaneously rendering on multiple desktops at the same time.

Desktops should not be mistaken for monitors – in Windows, a desktop contains monitors, not the

other way around. That means we can have a multi-monitor setup, but we can only see one desktop

at a time (extending multiple monitors, or mirrored). Only one desktop can be active at any time –

that is, being actually rendered and running a raw input thread that receives user input. This is an

architectural limitation that’s not avoidable without significant changes to the display/windowing

subsystem. Inquisitive readers can examine the inner workings of win32k.sys by disassembly and live

kernel debugging. ReactOS sources also provide valuable information, although they are not

compatible with Windows 7 as of yet [41]. The following paper describes the general architecture of

Windows user interface subsystem and several attacks against it [42].

If we can’t use separate desktops, can we satisfy our requirements using a single desktop for all

domains? We can in principle use job objects to contain each domain’s processes and impose

restrictions on using GUI handles that belong to processes not in that particular job object [43]. Job

objects also enable limiting access to global atoms – instead of using an atom table shared by all GUI

threads belonging to a window station, a job can have its own private atom table. Atom separation

increases the overall system security. See e.g. this prior research [44] which describes some attacks

possible through a shared atom table. A job object cannot restrict setting global message hooks,

despite some well-known publications claiming otherwise [45]. This is trivial to demonstrate – images

below show that restricted.exe, a process with all possible UI restrictions set in its job object, can in

fact inject a message hook DLL into other processes. And with arbitrary code execution all bets are

off.

Fig. 9, Debug output from a hook DLL showing attaches to non-job processes

 Page 14

Fig. 10, Job object containing the restricted process

To completely dispel any illusions that a single desktop can contain isolated applications running with

different privileges, let’s discuss the last sub-requirement of true GUI isolation: Non-spoofable

window decorations. All windows belonging to a domain should be clearly marked with appropriate

color and domain name. This is of course aimed to stop attacks where a malicious application

disguises itself as a legitimate password-entry field and similar. Unfortunately if an application can

display its window on a desktop, it can obtain a handle to this desktop and use that handle for any

drawing operations. This means drawing over other windows and generally tampering with our

hypothetical “GUI supervisor” that would draw “secure” window decorations.

Similarly, any window that can receive mouse and keyboard input can simulate such input [46] and

possibly craft malicious data affecting other windows. Malicious applications can also intercept input

data, for example logging keystrokes through GetAsyncKeyState function (which is just a wrapper

for a system call, like many other APIs, so restricting it is very difficult) [47].

With Windows Vista Microsoft introduced User Interface Privilege Isolation (UIPI) [48] – a mechanism

designed to mitigate shatter attacks [49]. Shatter attacks are a way of injecting arbitrary code into

other processes by using specific window messages. UIPI uses integrity levels [50] – special flags in

access tokens that specify mandatory access control level. Process with low integrity level can’t send

most window messages to another process with medium integrity level for example. UIPI mechanism

is not a security boundary however – some messages are still allowed. WM_KEYDOWN message can

cross integrity level boundaries and it can adversely affects the receiving application [51]. Also there

are only a few integrity levels available for use, which is not enough for arbitrary number of WNI

domains. Lastly, most off-the-shelf applications will not run correctly under low integrity level which

is not acceptable for Qubes WNI [52].

It’s also worth mentioning that Windows clipboard is shared by all desktops in the interactive

window station, so even if we could implement proper multi-desktop environment this would be a

problem. Clipboard is implemented in win32k.sys so regulating access to it is burdened by the usual

gotchas regarding kernel code modification [53].

 Page 15

Conclusion: GUI isolation with seamless domain integration is not currently possible. It may be

possible if we abandon the idea of having only one host desktop with domain-created windows

seamlessly appearing on and use switchable desktops for each domain. Even then there would be as

of yet unresolved issues (clipboard access).

Restricting access to network interfaces and peripheral devices
This requirement is possible to fulfill by creating custom device filter drivers. NDIS filters [54] can be

used to monitor and filter network traffic. Access to other devices can in principle be restricted in

similar way. This was not investigated further because previous unresolved issues are enough to

make Qubes WNI impossible to implement to a satisfactory level.

Other requirements
Job objects can be used to limit domain’s CPU usage to prevent DOS attacks. Remaining

requirements were not analyzed in detail due to severity of previous issues.

4. Summary
Existing successful Windows application sandboxes (e.g. Chromium [5] or Acrobat Reader [45]) rely

on the fact that the sandboxed process is specifically designed to run inside a sandbox. In a

supervisor/client model, the non-privileged client expects to run on a different desktop and with low

privileges in its access token for example, and needs to explicitly ask the supervisor to perform any

privileged operations. Primary use case for Qubes WNI is isolating unmodified applications, and even

supervisor/client sandbox model that’s implemented only in user mode can’t satisfy all of our

requirements (main offenders are system calls that affect global system state but are not subject to

ACL checks).

In short, Qubes WNI can’t be currently implemented due to following architectural limitations of

Windows systems:

 Inability to properly isolate Kernel Object spaces for different security domains.

 Limitations in the display and windowing subsystems preventing simultaneous use of more

than one desktop at a time. One desktop to rule them all seems to be an accurate description

of this issue.

 Lack of system-provided mechanism for API and system call restriction. We have some ideas

on how to implement such restrictions without the need for patching the OS kernel, but this

requires further substantial research.

It’s worth mentioning that pretty much all of these issues can be solved by using a server Windows

version with Remote Desktop service license. Interactive session is a true security boundary, but

multiple active sessions are only supported through Remote Desktop Services. Qubes WNI was

supposed to be a solution for consumers – ease of deployment on an existing Windows installation

was a primary requirement. Not many people will agree to reinstall their system from scratch and

purchase an additional license that is orders of magnitude more expensive than their previous one.

And even if they did, then we should remember that Windows Server systems come with built-in

bare metal hypervisor, Hyper-V, which we could then employ as container provider for Qubes to get

orders or magnitude better isolation than any Windows ACLs mechanisms could potentially provide

[55].

In closing, Qubes WNI project is put on hold until we come up with some breakthroughs that could

solve issues outlined above.

 Page 16

Appendix
Sample WinDbg script that demonstrates parsing internal win32k.sys structures. Usage:

$$>a< path\to\script\file n

Where n is the ID of an interactive session that should be analyzed.

$$ t0: session id (script parameter)

r $t0 = ${$arg1}

$$ t1: first process

r $t1 = nt!PsActiveProcessHead

$$ t2: current process

r? $t2 = @$t1

.printf "session: %N\n", @$t0

$$ Search for a window station in the given session.

$$ This can probably be done easier using some global win32k variable...

.do

{

 $$ t3: EPROCESS

 r? $t3 = (nt!_EPROCESS*) (@@masm(@$t2) - #FIELD_OFFSET(nt!_EPROCESS,ActiveProcessLinks))

 $$ Go to the next process.

 r? $t2 = @$t3->ActiveProcessLinks.Flink

 $$ Set context to current process.

 .process /r /p @$t3

 $$ t4: process name

 r? $t4 = @$t3->ImageFileName

 $$ t5: win32 process info

 r? $t5 = (win32k!tagPROCESSINFO*) @$t3->Win32Process

 .if (@$t5 != 0)

 {

 $$ t6: window station

 r? $t6 = @$t5->rpwinsta

 .if (@$t6 != 0)

 {

 $$ t7: session id

 r? $t7 = @$t6->dwSessionId

 .if (@$t7 == @$t0)

 {

 .printf "\nGot process in session %N, %ma\n", @$t0, @$t4

 .break

 $$ now $t6 is a tagWINDOWSTATION, $t5 is tagPROCESSINFO

 }

 }

 }

}

(@$t2 != @$t0)

$$ t9: sizeof(OBJECT_HEADER)

r? $t9 = #FIELD_OFFSET(nt!_object_header,Body)

$$ t9: (negative) offset of OBJECT_HEADER_NAME_INFO for a given object

r? $t9 = @$t9 + sizeof(nt!_object_header_name_info)

$$ t8: first window station

r? $t8 = @$t6

.if (@$t7 == @$t0)

{

 $$ t0: first desktop object

 r? $t0 = @$t6->rpdeskList

 $$ t1: current desktop object

 r? $t1 = @$t0

 $$ Loop through all window stations (t6 = current).

 .do

 {

 r? $t4 = (nt!_object_header_name_info*)(@@masm(@$t6)-@@masm(@$t9))

 $$ %mu expects null-terminated wide string, but buffer in UNICODE_STRING may not be

null-terminated.

 $$ %msu is supposed to take a UNICODE_STRING address but doesn't seem to work at

all...

 Page 17

 .printf ">WINSTA: %mu\n", @@c++(@$t4->Name.Buffer)

 $$ Loop through all desktops in the window station.

 .do

 {

 r? $t2 = @$t1->pDeskInfo

 r? $t3 = @$t1->pDispInfo

 r? $t4 = (nt!_object_header_name_info*)(@@masm(@$t1)-@@masm(@$t9))

 .printf "Desktop: %mu, %N, id %N, flags %N\n", @@c++(@$t4->Name.Buffer), @$t1,

@@c++(@$t1->dwDesktopId), @@c++(@$t1->dwDTFlags)

 .printf " Base: %N, window: %N, composited: %N\n", @@c++(@$t2->pvDesktopBase),

@@c++(@$t2->spwnd), @@c++(@$t2->fComposited)

 .printf " hDev: %N, pmdev: %N, hDevInfo: %N\n", @@c++(@$t3->hDev), @@c++(@$t3-

>pmdev), @@c++(@$t3->hDevInfo)

 .printf " hdcScreen: %N, hdcBits: %N, dmLogPixels: %N\n", @@c++(@$t3-

>hdcScreen), @@c++(@$t3->hdcBits), @@c++(@$t3->dmLogPixels)

 .printf " cMonitors: %N, primary: %N\n", @@c++(@$t3->cMonitors), @@c++(@$t3-

>pMonitorPrimary)

 r? $t1 = @$t1->rpdeskNext

 }

 (@$t1 != 0 & @$t0 != @$t1)

 r? $t6 = @$t6->rpwinstaNext

 }

 (@$t6 != 0 & @$t6 != @$t8)

}

.else

{

 .printf "No desktops in session %N\n", @$t0

}

 Page 18

References
[1] https://qubes-os.org/
[2] http://theinvisiblethings.blogspot.com/2013/03/introducing-qubes-odyssey-framework.html
[3] http://libvirt.org/
[4] http://msdn.microsoft.com/en-us/library/windows/desktop/ms724485(v=vs.85).aspx
[5] http://www.chromium.org/developers/design-documents/sandbox
[6] http://msdn.microsoft.com/en-us/library/windows/desktop/aa379557(v=vs.85).aspx
[7] http://msdn.microsoft.com/en-us/library/windows/desktop/ms721785(v=vs.85).aspx
[8] http://msdn.microsoft.com/en-us/library/windows/desktop/aa374872(v=vs.85).aspx
[9] http://msdn.microsoft.com/en-us/library/windows/desktop/ms724947(v=vs.85).aspx
[10] http://en.wikipedia.org/wiki/Hooking
[11] http://en.wikipedia.org/wiki/System_call
[12] http://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx
[13] http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
[14] http://www.uninformed.org/?v=3&a=3&t=sumry
[15] http://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
[16] http://msdn.microsoft.com/en-us/library/windows/desktop/ms724940(v=vs.85).aspx
[17] http://msdn.microsoft.com/en-us/library/windows/desktop/aa365780(v=vs.85).aspx
[18] http://msdn.microsoft.com/en-us/library/windows/desktop/aa365576(v=vs.85).aspx
[19] http://msdn.microsoft.com/en-us/library/windows/desktop/aa366556(v=vs.85).aspx
[20] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
[21] http://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v=vs.85).aspx
[22] http://msdn.microsoft.com/en-us/library/windows/desktop/ms685129(v=vs.85).aspx
[23] http://msdn.microsoft.com/en-us/library/windows/desktop/ms687012(v=vs.85).aspx
[24] http://en.wikipedia.org/wiki/Local_Procedure_Call
[25] http://blogs.msdn.com/b/ntdebugging/archive/2007/07/26/lpc-local-procedure-calls-part-1-
architecture.aspx
[26] http://en.wikipedia.org/wiki/Object_Manager_(Windows)
[27] http://msdn.microsoft.com/en-us/library/windows/desktop/aa379571(v=vs.85).aspx
[28] http://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
[29] http://msdn.microsoft.com/en-us/library/windows/desktop/aa378184(v=vs.85).aspx
[30] http://msdn.microsoft.com/en-us/library/windows/desktop/aa378338(v=vs.85).aspx
[31] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682431(v=vs.85).aspx
[32] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx
[33] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682434(v=vs.85).aspx
[34] http://www.nynaeve.net/?p=86
[35] http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
[36] http://msdn.microsoft.com/en-us/library/windows/hardware/ff549557(v=vs.85).aspx
[37] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1209
[38] http://msdn.microsoft.com/en-us/library/windows/desktop/ms687096(v=vs.85).aspx
[39] http://msdn.microsoft.com/en-us/library/windows/desktop/ms682573(v=vs.85).aspx
[40] http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
[41] http://doxygen.reactos.org/dir_7fafc42db1aeb26e18427fe0bd7122f8.html
[42] http://www.mista.nu/research/mandt-win32k-paper.pdf
[43] http://msdn.microsoft.com/en-us/library/windows/desktop/ms684152(v=vs.85).aspx
[44] http://mista.nu/research/smashing_the_atom.pdf
[45] http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-–-part-2-–-the-
sandbox-process.html
[46] http://msdn.microsoft.com/en-us/library/windows/desktop/ms646310(v=vs.85).aspx
[47] http://msdn.microsoft.com/en-us/library/windows/desktop/ms646293(v=vs.85).aspx
[48] http://en.wikipedia.org/wiki/User_Interface_Privilege_Isolation

https://qubes-os.org/
http://theinvisiblethings.blogspot.com/2013/03/introducing-qubes-odyssey-framework.html
http://libvirt.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724485(v=vs.85).aspx
http://www.chromium.org/developers/design-documents/sandbox
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379557(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms721785(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374872(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724947(v=vs.85).aspx
http://en.wikipedia.org/wiki/Hooking
http://en.wikipedia.org/wiki/System_call
http://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://www.uninformed.org/?v=3&a=3&t=sumry
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724940(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365780(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365576(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685129(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms687012(v=vs.85).aspx
http://en.wikipedia.org/wiki/Local_Procedure_Call
http://blogs.msdn.com/b/ntdebugging/archive/2007/07/26/lpc-local-procedure-calls-part-1-architecture.aspx
http://blogs.msdn.com/b/ntdebugging/archive/2007/07/26/lpc-local-procedure-calls-part-1-architecture.aspx
http://en.wikipedia.org/wiki/Object_Manager_(Windows)
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379571(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378184(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682431(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682434(v=vs.85).aspx
http://www.nynaeve.net/?p=86
http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff549557(v=vs.85).aspx
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1209
http://msdn.microsoft.com/en-us/library/windows/desktop/ms687096(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682573(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
http://doxygen.reactos.org/dir_7fafc42db1aeb26e18427fe0bd7122f8.html
http://www.mista.nu/research/mandt-win32k-paper.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684152(v=vs.85).aspx
http://mista.nu/research/smashing_the_atom.pdf
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-–-part-2-–-the-sandbox-process.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-–-part-2-–-the-sandbox-process.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646310(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646293(v=vs.85).aspx
http://en.wikipedia.org/wiki/User_Interface_Privilege_Isolation

 Page 19

[49] http://en.wikipedia.org/wiki/Shatter_attack
[50] http://msdn.microsoft.com/en-us/library/bb625957.aspx
[51] http://theinvisiblethings.blogspot.com/2007/02/running-vista-every-day.html
[52] http://msdn.microsoft.com/en-us/library/bb625960.aspx
[53] http://blogs.msdn.com/b/ntdebugging/archive/2012/03/16/how-the-clipboard-works-part-
1.aspx
[54] http://msdn.microsoft.com/en-us/library/windows/hardware/ff556030(v=vs.85).aspx
[55] http://technet.microsoft.com/library/hh831531.aspx

http://en.wikipedia.org/wiki/Shatter_attack
http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://theinvisiblethings.blogspot.com/2007/02/running-vista-every-day.html
http://msdn.microsoft.com/en-us/library/bb625960.aspx
http://blogs.msdn.com/b/ntdebugging/archive/2012/03/16/how-the-clipboard-works-part-1.aspx
http://blogs.msdn.com/b/ntdebugging/archive/2012/03/16/how-the-clipboard-works-part-1.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff556030(v=vs.85).aspx
http://technet.microsoft.com/library/hh831531.aspx

	1. Introduction to Qubes OS
	2. Windows Native Isolation for Qubes
	3. Technical analysis of Qubes WNI requirements and possible implementations
	Implementing basic domain security boundaries
	Preventing changes to global host OS settings
	Restricting cross-domain IPC
	Pipes
	Mailslots
	Sections (shared memory)
	Events, mutexes, semaphores, waitable timers
	Debugging and process/thread manipulation APIs
	Advanced Local Procedure Call (ALPC)
	Window messages

	Restricting file and registry access
	Restricting access to kernel objects
	Implementing GUI isolation and seamless inter-domain integration
	Restricting access to network interfaces and peripheral devices
	Other requirements

	4. Summary
	Appendix
	References

